

How Microsoft Builds Software: Redux

A case study of the mobile development

experiences of an SDET intern

By Philip Peng

For Jonathan M. Smith

University of Pennsylvania

CIS-099 Independent Study Report

Table of Contents

Introduction .. 3

Internship .. 3

Team and Product ... 4

Results ... 5

Microsoft Structure ... 6

SDEs, SDETs and PMs .. 6

Hierarchy ... 8

Microsoft Development Process ... 10

Timeline and Milestones ... 10

Agile Development Methodology ... 13

Scrum Process ... 14

Changes Since 1997 .. 17

Intern Project .. 20

Process .. 20

Project ... 21

Implementation .. 21

Results ... 23

Future Impact .. 24

Internship Reflection ... 25

Development Cycle ... 25

SDET vs SDE ... 25

Microsoft’s Vision ... 25

Works Cited ... 26

Introduction

Internship

Over the summer of 2011, I took on an internship at Microsoft as an SDET Intern

(Software Development Engineer in Test intern). It was my first real internship with a large

software company; I worked as a part-time IT specialist previous summers and during the

school year but only for educational institutions. As an undergraduate studying computer

engineering at University of Pennsylvania, the internship aligned well with my field of

study and gave me the opportunity to experience software development in an industry

setting.

Prior to the internship, I took the course CIS 350 “Software Design and Engineering”

with Professor Jonathan M. Smith, which focused on Colwell and Brook’s models of

software development. In one particular CIS 350 lecture, we discussed the old Microsoft

approach at software development, described in Cusumano and Selby's 1997 article, “How

Microsoft Builds Software”. The article was published two years after the release of

Windows 95 and their flagship product, Microsoft Office 95. Since then, Windows has

received numerous revisions (Windows 98, 2000, XP, Vista, 7) and Microsoft has vastly

expanded their product line (Bing, Xbox + Kinect, Windows Phone 7, Windows Live

services, etc.).

To efficiently accommodate these various different development requirements, the

Microsoft software development cycle has changed over the past 15 years. This report is a

case study of my summer experiences as an SDET Intern at Microsoft as part of the mobile

division working on a new software product. Since each division and product team adapts

different processes specific to their needs, this report is in no way representative of all the

official procedures or guidelines followed by the company. I have, however, tried to record

my summer experiences as accurately as possible to give readers an insight into how

Microsoft builds software.

Team and Product

Prior to my internship at Microsoft, my main experiences are in working on open

source software projects for embedded devices. While I was a developer for the

“iPodLinux” project, the members of our loosely-knit team lived around the globe and

mostly contributed independently on various different aspects of the project. “ZeroSlackr”

project was a solo effort, with me handling the development, documentation, and release

processes. In my game development experiences with writing “Beats, Advanced Rhythm

Game” for the Android platform, I also worked alone, filling all three roles of designer,

developer and tester. At Microsoft, however, the projects are of a completely different

magnitude and requirement. With a user base of millions around the world, Microsoft’s

software focus was strongly on quality and reliability. To achieve this, closely-

communicating teams would need to be formed for each product with responsibilities

distributed to specialized positions. For me, this was the first time working in a rigid team

structure on a large-scale project.

The team that I was placed in for my summer internship was unofficially known as

the “Mobile SkyDrive” team. Officially, we were part of the “Devices & Roaming Experience

Team, Windows & Windows Live Division” (WWL-DRX) as the feature team working on

SkyDrive integration for mobile devices. The WWL division covers development of the

main Windows operating system (Windows 7 and 8) and accompanying Windows Live

brand of products and services (Hotmail, Messenger, SkyDrive, etc.). The DRX team covers

devices and remote accessibility services for WWL products, mainly SkyDrive.

Effectively, my team was in charge of writing the mobile apps for Windows Live’s

new SkyDrive cloud storage service. We would be targeting the three major mobile

platforms: Windows Phone 7, iOS, and Android. Despite not having used or even heard of

SkyDrive prior to this internship, I was most likely placed on the team due to my previous

experiences with mobile/embedded devices development. The product itself would also be

a “Version 1” product, scheduled for its first release at the end of September (a month from

the writing of this report). For me, this was a great opportunity as it allowed me to watch

and participate in the creation of a brand new product from (almost) the start to end of its

very first development cycle.

Results

For SDETs there are roughly four main responsibilities: 1) writing test cases and

test specs, 2) writing testing tools and preparing the test/build infrastructures, and 3)

executing the tests and following up with bug reports to the SDEs (Software Development

Engineers, i.e. developers). During my summer internship as an SDET Intern, I was able to

experience two of those: writing test cases and writing testing tools. For writing test case, I

was responsible for testing some of the basic features of the iPhone SkyDrive app. For

writing testing tools, I was responsible for writing a test framework for automated testing

on Android.

For the first quarter of the summer, the team was finishing up with the planning

phase so I was able to contribute a bit in the design process and get a glimpse of the

specifications review process at Microsoft. In the second quarter of the summer, I had

written the automated test cases for verifying the “Sign in/Sign out” process and the

“Settings” page. The last half of the summer was spent writing a full and complete Android

test automation framework and the 36-page documentation for it (see the “Intern Project”

section of this report). The iPhone and Windows Phone 7 SkyDrive apps are expected to be

publically released by the end of this September, with the final builds tested thoroughly

against my test cases. The Android SkyDrive app is expected to be ready by the next

milestone and will be tested using my test automation framework. By the end of the

summer, I had fulfilled both my responsibilities and was given a full-time job offer as an

SDET at Microsoft.

Microsoft Structure

SDEs, SDETs and PMs

In Microsoft’s software development structure, there are generally two types of

positions: Individual Contributor (IC) and Manager. ICs are the “developers” of Microsoft;

they create the products and write the code. Managers focus on the bigger vision and

teamwork aspects, writing reports and deciding on the general direction of product

development. As an SDET Intern, I would be considered an IC as I wrote actual code. In

general, there are three IC positions at Microsoft: Software Development Engineer (SDE),

Software Development Engineer in Test (SDET), and Project Manager (PM). Their roles are

roughly as following:

Software Development Engineer (SDE):

- MSW Glossary definition: Individuals who write or debug computer programs and

may specialize in one or more methods of creating computer programs, Web pages,

or programming languages.

- Responsibilities include:

o Prototyping and investigation feature implementations

o Writing feature implementation specifications

o Implementing features following PM design specs

o Focus on scaled stability and performance

o Write unit tests and fix reported bugs

Software Development Engineer in Test (SDET):

- MSW Glossary definition: Individuals who test and critique software components

and interfaces, write test programs to assure quality, and develop test tools in

order to increase effectiveness.

- Responsibilities include:

o Preparing and writing automated testing framework/tools

o Writing test cases and scenario specifications

o Implementing test cases to test against PM design specs

o Running automated tests and occasionally manual verifications

o Reporting bugs and checking fixes

o Maintaining automated daily build environment

Project Manager (PM):

- MSW Glossary definition: Individuals who are responsible for pulling together and

facilitating internal project team communication, driving trade-off decisions, and

owning budget and resource planning for multiple projects or programs.

- Responsibilities include:

o Facilitate communications with other involved teams

o Design UI prototypes and interaction behaviour/workflows

o Writing design specifications and scenarios

o Managing feature implementation priorities and timelines

o Organizing internal “dogfood” testing and writing usage documentation

Each feature team consists of SDEs, SDETs and PMs in a rough ratio of 3:3:2, with

each role having equal importance and influence on the final product. While PMs may be

involved in multiple projects, SDEs and SDETs usually focus on one product/feature line

and work closely to follow the PM design specs.

Hierarchy

The “chain of command” at Microsoft is different from most companies. Instead of

reporting to a central “team lead”, ICs report to the lead of their specific position. As an

SDET Intern, I am under the guidance of an SDET II (James) and report directly to the

Senior Test Lead (Anup), who reports to the Principal Test Manager (Imran), and so on,

only converging with the other IC roles near the very top of the tree and ending with Steve

Ballmer.

DRX-WWL Mobile SkyDrive SDET Tree:

Philip (me)

SDET Intern

James

SDET II

Eric

SDET II

Geoffery

SDET I

Anup

Senior Test Lead

Imran

Principal Test Manager

Arthur

Corporate VP-SDET

Christopher Jones

Corporate SVP-Business

Steven Sinofsky

President

Steve Ballmer

CEO

WWL-DRX Test

Mobile SkyDrive

WWL-DRX Test

Windows Live

Test

WWL-DRX Test

Mobile SkyDrive

Windows Live

Windows &

Windows Live

Microsoft

WWL-DRX Mobile SkyDrive Tree:

Although the three branches (dev, test, and PM) do not merge until Christopher

Jones, there is much interaction on every level of the tree. For our team, the SDEs, SDETs

and PMs interacted on a daily basis through Scrum meetings, office drop-bys, demos, and

occasionally over lunch. At least one of the leads would be present at every Scrum meeting

and the three leads would meet weekly to evaluate the current project progress and

schedule. The test lead Anup would also hold a weekly Scrum-like meeting just for his

directs (e.g. SDETs that report to him). Once every few weeks, the entire DRX test team

under Imran (there were three DRX teams) would also gather to give demos, go over

progress statistics of each team, and discuss employee feedback and/or concerns.

Anup

Senior Test Lead

Imran

Principal Test Manager

Arthur

Corporate VP-SDET

Christopher Jones

Corporate SVP-Business

Steven Sinofsky

President

Steve Ballmer

CEO

WWL-DRX Mgrs

Mobile SkyDrive

WWL-DRX

Management

Windows Live

Management

WWL-DRX ICs

Mobile SkyDrive

Windows Live

Windows &

Windows Live

Microsoft

Stephen

Corporate VP-PM

Philip

Distinguished Engineer

Michael

Princ Group Prog Mgr

(Empty)

Principal Dev Manager

Mona

Senior Prog Mgr Lead

Michael

Principal Dev Lead

SDETs:

Eric, Geoffery, James,

Philip

PMs:

Azure, Vivian, Wissam

SDEs:

Aleksandra, Alexander,

Ben, Bin

Microsoft Development Process

Timeline and Milestones

In Windows Live, milestones are grouped together by “Waves”. A Windows Live

Wave can be thought of as an iteration of the Windows Live platform; the Wave 4 update

released last year introduced numerous improvements in it online services such as a built-

in Web Messenger and Essentials. Each Wave containing four major Milestones: MQ, M1,

M2 and M3. MQ is known as the “engineering phase” with little or no PM involvement.

During MQ, the SDEs and SDETs set up development infrastructure, design and inspect the

architecture, and prepare the hardware. M1 is the first development milestone and consists

of planning, coding, and stabilization phases. M2 and M3 are repeats of M1 with the

inclusion of user feedback and the addition of work items not completed in previous

milestones. An example early version of the Wave 5 timeline is shown below. When I joined

Microsoft at the beginning of the summer, we were just at the start of M2 of Wave 5.

Windows Live Wave 5 Example Timeline:

1/1 2/1 3/1 4/1 5/1 6/1 7/1 8/1 9/1 10/1

1/24-2/11

M1 Planning

(3 Weeks)

5/23-6/10

M2 Planning

(3 Weeks)

2/14-3/25

M1 Coding

(6 Weeks)

6/13-7/22

M2 Coding

(6 Weeks)

3/29-5/20

M1

Stabilization

(8 Weeks)

7/25-9/16

M2

Stabilization

(8 Weeks)

3/25

M1 CC

4/1

M1 DC

5/6

M1 ZBB

5/13

M1 RC

5/20

M1 RTO

7/22

M2 CC

7/29

M2 DC

9/2

M2 ZBB

9/9

M2 RC

9/16

M2 RTO

Planning:

This is the organization and spec-writing phase. During this phase, the feature list is

brainstormed and prioritized. User feedback or marketing research is heavily consulted if

available. The most important features are selected for the current milestone and

ownerships of features are assigned to each team member. The PMs write design specs

detailing the exact user interaction and response flow for each feature as well as create

mock UIs. The SDEs write implementation specs following the PM specs for each feature.

The SDETs write test methodology specs and user scenarios that would test out the target

features. Throughout the entire process, prototyping is done to give rough estimates of the

“cost” of the feature in “days” (equivalent to Brook’s “man-day”) and scheduling adjusted

accordingly. In total, the planning phase is allotted three weeks.

Coding:

This is the pure code-cranking phase. During this phase, the SDEs turn their

implementation specs into actual code. The SDETs set up the daily building process and

write code for running automated test cases, then run the test cases or engage in manual

testing as SDEs commit code. The PMs communicate with other related teams (such as, in

our case, the SkyDrive Backend team) for updates and prepare market data and

documentation for “dogfooding” (see below). The coding phase concludes when all features

are complete (or moved to the next milestone) and “code complete” is declared. In total, the

coding phase is allotted six weeks.

Stabilization:

This is the break-and-fix phase. This phase starts with the internal “dogfood” testing.

During this phase, the SDEs work with the SDETs to resolve all the bugs caught by the

automated and manual testing. PMs work on release documents and setting up the market

for the release, as well as start planning for the next milestone with feedback from the

dogfooding in mind. While all feature designs are frozen during the phase, implementations

are improved for stability and performance. Once all bugs have been declared as closed or a

as a feature moved to the next milestone, Zero Bug Bounce is declared and the final product

goes through as a Release Candidate, then Release To Operations. In total, the stabilization

phase is allotted eight weeks.

Code Complete (CC):

When all dev code has been written and tested for basic functionality, the project

has reached “Code Complete”. This is usually a celebratory day and indicative that the

product is now ready for dogfooding. The MSW Glossary definition of code complete is as

following: “A development milestone marking the point at which all features for the release

are implemented and functionality has been verified against the functional specification.”

Dogfood Complete (DC):

After “Code Complete” has been declared, the product is almost ready for the

dogfood process. MSW Glossary defines dogfood as: “Software code not fit for public

consumption but good enough for internal purposes, very unrefined and buggy (that is, full

of bugs), but containing the basic nutrients.” In other words, dogfooding is the process of

internal testing and feedback, usually first starting with the feature team itself, then

expanding to the product team and finally the entire division. “Dogfood Complete” is

declared once the completed build is available and dogfooding instructions are ready.

Zero Bug Bounce (ZBB):

Zero Bug Bounce is the target state at the end of the stabilization phase. This is the

stage where all bugs have either been resolved or turned into features for the next

milestone. MSW Glossary more formally defines this as: “The first point in time after code

complete when there are no active bugs older than a certain amount of time (typically

several days, pre-defined based on the end-to-end time required to resolve a bug).”

Release Candidate (RC):

The Release Candidate is the first build ready for public consumption. MSW Glossary

defines RC as: “Builds of products produced with no known issues that the product team

believes should prevent them from being released to manufacturing or to the Web.”

Release to Operations (RTO):

Once the Release Candidate is ready, the next step would be Release to Operations,

referring to Microsoft Operations (SMSG), the group that handles the public release

process. MSW Glossary defines RTO as: “The point in the product development process at

which the software and documentation of the product are released to operations groups.”

Once the Operations group receives the build, they will make the product available to the

relevant consumers (e.g. OEMs, commercial licensers, public website, etc.). Immediately

following RTO is the start of the next Milestone, beginning again with the Planning phase.

Agile Development Methodology

Mobile development is a relatively new phenomenon in the software development

industry. For in particular, entering the mobile market requires a lot of change in the

software development process. Large scale projects such as Windows or Office usually have

development cycles lasting many months or years resulting in a largely stable product that

is only periodically updated with patches. In the mobile world, however, fixes and new

updates are expected on a monthly or sometimes weekly basis. To adapt to these different

expectations, many processes had to be heavily modified or, like in our team’s case, scraped

and replaced with something new. For the Mobile SkyDrive team, the decision was made to

use the agile development methodology with the scrum framework.

MSW Glossary defines “agile” as “A people-oriented, adaptive methodology for

application development that focuses on short iterations and customer interactions.” At

The official “Principles behind the Agile Manifesto” document reads as follows:

1) Our highest priority is to satisfy the customer through early and continuous delivery of

valuable software

2) Welcome changing requirements, even late in development. Agile processes harness change for

the customer's competitive advantage.

3) Deliver working software frequently, from a couple of weeks to a couple of months, with a

preference to the shorter timescale.

4) Business people and developers must work together daily throughout the project.

5) Build projects around motivated individuals. Give them the environment and support they

need, and trust them to get the job done.

6) The most efficient and effective method of conveying information to and within a development

team is face-to-face conversation.

7) Working software is the primary measure of progress.

8) Agile processes promote sustainable development. The sponsors, developers, and users should

be able to maintain a constant pace indefinitely.

9) Continuous attention to technical excellence and good design enhances agility.

10) Simplicity--the art of maximizing the amount of work not done--is essential.

11) The best architectures, requirements, and designs emerge from self-organizing teams.

12) At regular intervals, the team reflects on how to become more effective, then tunes and adjusts

its behaviour accordingly.

Our team’s main focus was to create a free app that will allow users to effectively

use their mobile devices to access the free SkyDrive service. To accomplish this, we would

be very customer-based and frequently release updates based on user feedback of their

experiences with the app (after the first release). If the users decided that they preferred a

different feature or implementation or some technical roadblock appeared preventing us

from executing our original plan, we would need to be able to react fast. The agile

development methodology would allow us to do just that.

Scrum Process

In addition to adhering to agile development principles, we kept on-track by

integrating parts of the Scrum process into our development cycle. MSW Glossary defines

“scrum” as “An agile, lightweight process that can be used to manage and control software

and product development using iterative, incremental practices.” In rugby, a “scrum” is a

method used to decide on restarting a play after the ball goes out of bounds. The software

development “Scrum” can be seen similarly; the Scrum process is used to restart the

development cycle when an unexpected change in plan or user expectations happens. We

implemented a few key aspects of the Scrum process: backlog, burn-down chart, sprints,

daily stand-ups, and demos.

In his article titled “Agile Development: Lessons Learned from the First Scrum”, Dr.

Jeff Sutherland documented the first usage of the Scrum process in software development.

Despite happening almost 20 years ago, much of his experiences and strategies still work

today and were applied with visible effects by our team. In his article, Sutherland wrote:

The first Scrum started with a half day planning session that outlined the feature set we

wanted to achieve in a six month period. We then broke it into six pieces which were achievable in 30

day sprints. This was the product backlog. For the first sprint, the product backlog was transformed

into development tasks that could be done in less than a day.

Instead of just a “half day planning session”, our team expanded this portion to the

entire planning phase. User expectations and target features were brainstormed,

researched, filtered, and listed as requirements in our “product backlog”. This feature count

would then be placed onto a downward-sloping “burn-down chart” that would be updated

weekly to reflect the current project “code complete” status. These backlog items were also

categorized into four priority levels: P0, P1, P2 and P3 with P0 being required “user

stories” and P3 being less important “stretch goals”. The PMs drafted UI mock-ups,

designed feature usage workflows, and wrote specs describing the user behaviours that

would achieve desired results. Through prototyping and investigation, the SDEs recorded

the estimated “cost” and relayed back to the PMs on whether or not the feature should be

changed or scrapped if the cost was found to be too high. In the meanwhile, the SDETs went

through the PM specs and wrote test specifications and test cases covering expected and

unexpected user behaviours and interactions and their expected results. At the end of these

investigations and spec writings was the final sprint-planning phase in which each backlog

item was assigned to either Sprint 1 or Sprint 2 of our Milestone 2 timeline (we divided M2

into two “mini-milestones”/sprints called S1 and S2).

Another important aspect of the Scrum process that we followed was the daily

stand-up meetings, also known in MicroSpeak as “brown bags” (due to the historical

inclusion of a brown bag containing cookies at such meetings). MSW Glossary defines the

term as: “Short, informal training or informational meetings that generally occur over the

lunch hour, designed to fit into the schedules of individuals who might not be able to attend

at other times of the day.” Sutherland outlined the following requirements for Scrum

meetings:

The meetings were kept short, typically under 30 minutes and discussion was restricted to the

three SCRUM questions:

1. What did you do yesterday?

2. What will you do today?

3. What obstacles got in your way?

To further encourage the brevity of the meetings, our team’s daily brown bags were

scheduled at 11:30 am such that we would walk out half an hour later ready to go for lunch

together. Despite their brevity, however, I found the daily meetings to be the highlight and

winning point of the Scrum process. Going around the table, each member of the team was

able to become informed of the latest updates and changes through just a handful of

sentences. As an SDET, it was immensely helpful as it allowed me (or my fellow SDETs)

know of when a changeset had been or will be checked in such that I could plan my test

case writing or running. For SDEs, the face time allowed them to discuss implementation

issues or challenges with their fellow developers as well as request clarifications or suggest

changes to the PMs. For the PMs, the meetings were a chance to verify that the project was

still on track and plan for arranging meetings with other teams if necessary. It was very

common for the brief 30 minute meeting to be far more productive than hours of back-

forth email and instant message conversations.

The final and most anticipated part of the Scrum process, however, was the demos. Sutherland

described his Scrum demo experience as followed: Every Friday during the first Scrum, we held a demo

and brought in development experts from other companies in to look at the product. As a result our

developers had to do the demo for their peers in other companies. This was one of the best accelerators

I have seen in software development. An outside expert would say, "That’s terrible; look at Borland's

Product X to see how it should be done" or "How could you possibly [sic] have a dumb bug like that?"

As a result of this outside input, all problems or bugs would be fixed the following week. Developers

refused to be embarrassed a second time in front of their peers.

Rather than having a regular scheduled demo time, our team gave quick demos to

each other either during our daily brown bags, over lunch, or whenever we dropped by

each other’s offices. Since Mobile SkyDrive was a Version 1 product, demos during the first

half of the summer were mostly prototypes of specific feature implementations. I

remember one meeting where one of our Windows Phone 7 SDEs complained about the

lagginess of the default picture transition animation and showed it to us. The next day, he

came in smiling and demoed off his “slideshow” hack (loading adjacent pictures and just

applying a translation to the expanded canvas, then reload on animation completion).

Being able to immediately see the improvement definitely gave a rewarding feeling and

morale boost to the entire team – one less worry for the SDEs, one less design change for

PMs to consider, and one less “bug” for SDETs to test.

Sometime during second half of the summer, we had our first “working” iPhone

SkyDrive build. It was a huge celebratory moment one of our SDEs took out his iPhone and

showed us a picture on his phone that he had just uploaded to SkyDrive a few minutes

before the meeting. It was equally interesting when I dropped by one of my fellow SDET’s

office later that day to try playing around with the app myself. While randomly tapping the

iPhone’s screen, the app completely froze and the UI stopped responding. I showed him his

iPhone, to which he responded, “Uh oh, we definitely can’t ship with that.” An hour later, a

bug report had been filed and the SDEs were busy investigating the root cause.

Changes Since 1997

In 1997, MIT professor Michael A. Cusumano and UC-Irvine professor Richard W.

Selby wrote an article titled “How Microsoft Builds Software.” Using research into the

development of products such as Windows 95, Windows NT, Microsoft Office, etc.,

Cusumano and Selby described the common Microsoft software development process and

“synch-and-stabilize” methodology. Almost 15 years later, the core principles are still the

same but the details have changed.

According to the article, Microsoft had 20,500 employees and annual revenues of

$8.7 billion in the fiscal year ending June 1996. According to Microsoft News Center,

Microsoft had 90,400 employees and annual revenues of $70 billion in the fiscal year

ending June 2011. Since Windows 95, Microsoft has come out with Windows 2000,

Windows XP, Windows Vista, and Windows 7; Microsoft Office has also increased

numerous versions as well. The company breath has also expanded to cover more

hardware, game consoles, mobile devices and phones, and recently cloud-based computing.

As a result, there are numerous variations in development processes between product lines

and even teams, with each development process tuned toward the team’s particular needs.

For comparison purposes, I will contrast the processes described in Cusumano and Selby’s

article with those that I saw used in Windows Live.

Cusumano and Selby describe Microsoft’s organization as a “scaled up” version of

the loosely structured hacker-style with multiple small teams working in parallel to build

large products. The parallelism still exists with small teams being assigned features of a big

product, but there are no longer signs of loose hacker-style design autonomy. Through the

use of design spec templates and feature tracking/prioritizing and other organizational

tools, development follows a much stricter, professional procedural path than described in

the article. There is generally a greater emphasis into professionalism and stability instead

of feature-richness and innovation.

The change synchronization aspect has also become more formal. All code commits

must first go through a “code review” conducted by members of the same team. Only once

the changeset has been “signed off” by required members is the changeset allowed to be

committed. If the automatic build process is in place, the changeset will only be merged in

after a clean test build with the new changes has been completed without errors (this can

take an hour or longer). Consequently, the “frequent synchronizations and periodic

stabilizations” model has changed to “synchronize on feature complete and stabilize

immediately after”. Despite this change, “milestones”, “daily builds”, “nightly builds” and

“zero-defect” are still commonly used terminology.

The Planning and Stabilization phases have generally stayed the same, but the

testing during the Development phase has become more parallelized. Rather than testing

feature sets in chunks, tests are written and executed as the feature gets completed and

committed. In the down time during which SDETs were “blocked” due to a specific owned

feature not yet having been completed, the SDETs would work on another task, such as

maintaining the build tools/process, writing testing tools, or even writing prototype test

case code without having anything to test against. In my mobile team at least, our SDETs

would always be waiting on the SDEs to finish a feature, but we would always have

something else to do in the meanwhile.

With Product Managers handling all design aspects of development, SDEs now are

far less involved in design decisions. During my brief presences at some of the planning

meetings at the beginning of the summer, I saw on a few occasions SDEs or SDETs

disagreeing with the PMs on what the users want most or how the user will most likely

interact with the app. In the end, however, the PMs had the final say and the SDEs were to

follow the PM specs. While this may seem overly restrictive on the SDEs, it does exemplify

Microsoft’s shifted preference toward more professional design choices (developers are

not known to be the best designers).

The development process itself has also evolved to varying degrees depending on

the team. Agile development seems to be the main development model in Windows Live,

with my Mobile SkyDrive team taking the extreme approach of sprints inside milestones

and usage of the Scrum process (introduced roughly around the same time Cusumano and

Selby’s article was published). With the design-change freeze during the 6-week Coding

stage, however, there is still a hint of sequential development rigidness that ignores

customer demand changes during that period (e.g. no adaptation until 4 months later). This

was described to me by my manager as a positive however; by locking down your design

during a milestone, you are guaranteeing your customers a stable, reliable product, even if

it’s not cutting edge and fits their needs perfectly. Although this contributes to Microsoft’s

slowness in reacting to the marketplace demands, it strongly establishes Microsoft’s stance

and focus on professionalism and stability.

Intern Project

Process

Every year, full-time employees (FTEs) at Microsoft undergo a review process that

includes an initial commitments meeting, midpoint review, and a final review. For summer

interns, the process is shrunken (to 12 weeks in my case). In addition to watching a series

of online videos for the “ramp-up” training process and a New Employee Orientation (NEO)

involving some mixer events, presentations, and general overview of company policies, all

interns sit down with their manager during the first week and draft the intern

commitments document. The expected content of the document varies from manager to

manager, but the Interns Commitment document roughly outlines the Intern Project goals

for the summer, how they will be accomplished, and what the expected results are. At the

midpoint review, the progress on each commitment is checked and the manager gives

feedback on performance so far as well as expectations for the second half of the summer.

The final review meeting is conducted during the last week of the internship to see if all the

expected commitments were met and if performance was satisfactory. As a Windows Live

intern, we also were expected to give a short presentation to test managers and executives.

Sample intern commitment:

Commitment: Execution Plan: Accountabilities:

Android
Automation
Framework
Analysis of current
application view

Write built-in library that is compiled with the
application itself and has access to the
application’s main context and views:

- Use code samples from public Google
API + documentation

- Build hierarchy of all UI elements and
common/specific shared characteristics
for different UI elements

- Make sure all hierarchal structuring is
consistent with the iPhone automation
framework’s layout

- Write a sample test app with all testable
UI elements and multiple views

Framework can perform the
following:

- Locating UI
elements

- Retrieving UI
element properties

- Determining layout
of screen and
visibility of UI
elements to user

Project

At Microsoft, manual testing is kept to the bare minimum wherever possible. This is

because builds are made daily and all tests need to be run against each build. These

extremely comprehensive tests/verification checks can take many hours to run if done

manually, but only a few hours by computers. As a result, it is far more time efficient to

write automated tests that simulate user behaviour and can be run remotely and logged for

inspection later. In our particular case, since we were dealing with mobile devices, all our

testing was done by running test scripts against emulators running on dedicated

computers that built and ran tests every evening (so we could come in the office and check

the logs first thing in the morning). Manual testing was only necessary if the logs were

unclear or if the testing tools was not powerful enough to cover the desired test. The

combination of testing tools and scripts are often referred to as the test automation

framework. The test automation framework would essentially contain all the components

needed to simulate blackbox-like user interaction with the product.

My intern project for the summer was to write a test automation framework for the

Android platform. Since the Mobile SkyDrive project targeted Windows Phone 7, iOS and

Android, we needed to have test automation frameworks for all three platforms. Prior to

the formation of the Mobile SkyDrive team, members of my team had worked on the iPhone

Messenger app and had developed a test automation framework for iOS. As I was the only

one on the team with experience in Android development, I was put in charge of filling in

the Android component.

Implementation

When my manager and I met at the beginning of the internship to discuss the intern

project, the Android test automation framework had four initial requirements:

- Launch the test application

- Inspect the current visible screen for UI elements

- Verify state information of those UI elements

- Simulate user behaviour on those UI elements

To achieve these goals, my Android Test Automation Framework contained four

main components: 1) PC Client, 2) PC Scripts, 3) Android Test Runner, and 4) Android Test

Application. The 1) PC Client is a PC program that sends command requests (e.g. test case

commands) to the Android device running the Android Test Runner. The 2) PC Scripts are a

series of scripts that handle Android device management (e.g. package updating and

launching). The 3) Android Test Runner is a custom Android instrumentation test case, run

by the Android OS’s built-in InstrumentationTestRunner application, which extends testing

capability by implementing an HTTP server that dynamically receives commands and

executes them. The 4) Android Test Application is the production Android application that

is under instrumentation and testing. Without going into details of how each aspect was

implemented (apart from the Android Test Application, which would be written later by

SDEs and thus is treated as a blackbox), the overall abstraction layer diagram is as

following:

Android Test Automation Framework Abstraction Layers:

Android Emulator

Android Test Runner

Android Test Application

Host PC

Batch Scripts

adb cmd
PC Client

Tester

Results

Although the intern project was timelined to take the entire 12 weeks of my

internship, due to some team reorganizations near the beginning of the summer (and

subsequently the shifting of some iPhone feature testing responsibilities to me), the project

did not begin until the end of the fifth week (halfway through my internship). Nevertheless,

I was able to completely complete all the initial requirements as well as implement a lot of

additional “stretch-goal” features. The final generalized feature list was as following:

- Starting up the Android emulator

- Unlocking an Android device/emulator’s lock screen

- Installing/uninstalling packages

- Starting the Android Test Runner (a specially modified JUnit test case)

- Starting the Android Test Application

- Running an HTTP server that receives requests and returns responses dynamically

- Parse XML messages and execute parsed commands

- Locating UI elements by name, ID, tag, and/or text on the Test Application

- Constructing a UI element layout tree for the Test Application

- Retrieving UI elements properties in the Test Application

- Performing various actions on UI elements of the Test Application

- Performing touchscreen and keyboard/button input actions on the Test Application

- End the Test Runner and Test Application

- Stop the Android emulator

In addition to fully explaining and demoing off the test framework to the other

SDETs in my team and my manager, I also wrote a 36-page documentation containing

usage details as well as implementation notes (my manager was delighted and joked that I

went a bit overboard). During my last week, I also gave presentations of my intern project

overview and live demoing of the test framework, first to my Mobile SkyDrive team under

Anup, then to the WWL-DRX Test team under Imran, and finally to a group of WWL test

managers under Arthur, including Arthur himself. The presentations and demos were very

well received, with Arthur following up with me about the sharing of the test framework

with other mobile teams in the future. The internship ended with me finally committing the

code and documentation to the Source Depot (centralized source code server).

Future Impact

By the end of my internship, our project was into the Stabilization phase of

Milestone 2. In a few months, the Coding phase of Milestone 3 will start and the

development of the Mobile SkyDrive app for Android will begin (the prototype I had

included in my test framework was for testing purposes only but it had some reusable code

that will probably be used as reference by the SDEs). When the first Android build appears,

the SDETs on the team will need to start writing automation test code to test that build and

will be using my test framework to execute that test code. At the time when I had finished

my internship, my Android test automation framework was actually much more powerful

and comprehensive than the one we had in place for iOS. Since the code was well

commented, implementation details recorded in the documentation, and other SDETs on

my team familiarized with using the framework, I am expecting it to be the foundation for

Android testing in the common test framework that my team planned on developing (I had

also included a detailed To-Do list in the documentation along with implementation

suggestions/ideas). Seeing the rise of mobile development needs in Microsoft with other

product teams also planning on creating mobile clients, there will be a need for a

centralized, in-house common test framework. If my team decides to generalize certain

parts of our common test framework, I envision it being used by other mobile teams

outside of DRX.

Internship Reflection

(TO-DO – need to confirm with Manager on level of non-disclosure)

Development Cycle

Content outline:

- Saw almost full development cycle

- Scrum = good

- Microsoft dev cycle still too slow (too much focus on process)

- Mobile SkyDrive = V1 product so process was experimental

SDET vs SDE

Content outline:

- Difference in roles

- Enjoyed both, which to choose?

- Microsoft role flexibility

Microsoft’s Vision

Content outline:

- Windows 8

- SkyDrive

- Mobile devices

Works Cited

- “Fast Facts About Microsoft.” Microsoft New Center.

<http://www.microsoft.com/presspass/inside_ms.mspx>.

- “MSW Glossary.” Microsoft Web (Microsoft internal resource).

<http://msw/AboutMicrosoft/Glossary/Pages/default.aspx>.

- Brooks, Frederick P. The Mythical Man-Month. Addison-Wesley: 1975.

- Colwell, Robert P. The Pentium Chronicles. Willey-Interscience: 2006.

- Cusumano, Michael A. and Richard W. Selby. “How Microsoft Builds Software.”

CACM 40(6): 1997, pp. 53-61.

- Highsmith, Jim et al. “Principles behind the Agile Manifesto.” Agile Alliance:

2011. <http://agilemanifesto.org/principles.html>.

- Sutherland, Jeff. “Agile Development: Lessons Learned from the First Scrum.”

Scrum Alliance: 2004. <http://www.scrumalliance.org/resources/35>.

http://www.microsoft.com/presspass/inside_ms.mspx
http://msw/AboutMicrosoft/Glossary/Pages/default.aspx
http://agilemanifesto.org/principles.html
http://www.scrumalliance.org/resources/35

