
GPU-Accelerated Beat Detection for Dancing Monkeys

Philip Peng

University of Pennsylvania

Yanjie Feng

University of Pennsylvania

Abstract

In music-based rhythm games, the game system needs to create
patterns matching with background songs for player to play with.
These patterns are often created by manually by the game
developers. Such manual works have obviously limitations. As a
result, Karl O’Keefe of Imperial College London created a system
which can automatically employ beat detection to generate DDR-
style stepfiles for arbitrary songs. However, his approach is using
a brute force calculation method which is very slow to achieve the
accuracy of the result.

Our Project focus on trying to figure out a way to accelerate this
approach on GPU by testing different approaches and compares
the results.

1. Introduction

To create a music-based rhythm games, it always requires
generating some arrow patterns which can presents the rhythm of
the background songs to let player to hit them. In old days, such
patterns were always generated manually. Manual create those
patterns is a very tedious and boring work and always leads to not
very accurate results.

Later, many studies related with how to generate such pattern
automatically have been done. Almost in all those methods, a real
number presenting the rhythimic tmpo of a song called beats-per-
minute (BPM) was mentioned as one of the most important parts
to create patterns from songs.

The calculation of BPM requires large number of calculation such
as sorting, sampling, checking fitness, looking up results, etc. As a
result, it always takes a lot of time to calculate a suitable result.
More details about how to calculate BPM will be mentioned in
section 3

2. Related Work

Beating detection has been studied by many people in previous
years. “Beat this” System created by Cheng et al. was based on
handling certain psychoacoustic characteristics of humans to
"perceive" the pulse content of a musical signal in ways similar to
the human ear. Will Archer Arentz’s paper “Beat Extraction from
Digital Music” introduces a method taking advantage of the
song’s repeating sampling to generate beat patterns by analysis
BPM from digital music.

3. The Dancing Monkey Framework

Our project is based on an open-source project called dancing

monkey which is an implementation of “Beat Extraction from

Digital Music” done by Karl O’Keefe, a student of Imperial

College London. The workflow of dancing monkey’s system is as

follow:

1, The system takes a song and some other parameters like
difficult level, output format setting, etc. as inputs.

2, The system will decoding the song files. If the file is an MP3
file, then the system will convert it to a wav file. Waveform data
will be collected and stored into system for further use.

3. The system will calculate the BPM and gaps based on the
waveform data.

4. Generate arrow patterns based on BPM and gaps.

In our project, we focus on trying to use GPU to accelerate step 3.
The step 3 can also be divided into several small steps:

3.1, The system checks the entire song to get the peaks and
troughs.

3.2, It calculates beat offsets from peaks.

3.3, It tries the first pass to find whether we can get a close BPM
result in a user defined range by a brute force method step through
the entire range. And check the fitness of such result.

3.4, It tries to refine the result of 3.3 by a second pass and get a
final result.

Basically, 3.3 and 3.4 are just the same. The calculation and
fitness checking are two big loops which we decided to use GPU
techniques to replace and get more accelerated results.

4. Accelerated Experiment

In order to start our accelerate experiments, we first set up a time
breakdown on the default project and try to see how long does it
take for each part of the system. Details are showed in Figure 1.

As mentioned before, our project is mainly focus on the BPM
calculation part with its brute force calculation part and fitness
check part. We designed several approaches to accelerate them.

 Figure 1 The time breakdown of original
dancing monkey project and its BPM calculation
part.

4.1 Matlab Parfor

Matlab’s parallel computing tools provide a “parfor loop” besides
the default “for loop”. It can be used similar like a “for loop” to
execute a series of calculation in the loop body.

The difference between parfor and for is that the parfor will divide
the calculation in its loop body to different threads on CPU. Thus,
those calculations are paralleled. Such threads are called
“workers” according to Matlab documents. In order to notify the
CPU to run such tasks, “matlabpool” command needs to be done
to let the CPU know how many workers will be assigned into the
work.

However, a parfor loop doesn’t accept discontinue range or a
different step other than 1. So, we need to re-write the default
index by creating a temporary array whose index is continued and
having a step of 1. After that, we copy back the calculated results
from the temporary array to default array. We made modification
on both BPM calculation part and the fitness check part.

4.2 Matlab GPUarray

GPUarray is another approach we tried to increase the project’s
performance provided by Matlab’s computing tools.

The GPUarray function can help us initialize the data directly on
GPU side. And then, set a pointer to the function which we want
to process the data on GPU and using Matlab’s “arrayfun” with
that pointer as a parameter to calculate those data in parallel.
Finally, using “gather” function to get data back to CPU side.

The “arrayfun” function will decide to run on CPU or GPU
depending on the data sent to it which is a similar feature like
thrust.

In order to achieve this workflow, we need to modify the default 2
big loops into 2 functions. And the data used in those functions
will also need to be re-construct so that they will be suitable to run
on GPU.

In practice, we also encountered 2 other great challenges: first, the
original for-loop highly depending on many data outside the loop
which can only be treated as global variables to a modified
function. However, arrayfun cannot use such global variables on
GPU side; second, matlab only provides very limited data-
structures on GPU side. Almost no other data-structure than
GPUarray exists. But the original code requires calculating some
different types of matrix. Those matrixes are hard to move to
GPU.

4.3 Jacket gfor

Jacket is a matlab plug-in developed by Accelereyes. It provides
lots of more GPU data structures supporting lots of more
functions running on GPU. Its “gfor” loop can easily modify any
default for loop to run on GPU side which they claim will
significantly increase the performance of original for loop.

In order to make Jacket work on our project, we first initialize all
data directly used in calculation as GPU data by using Jacket’s
gdouble, gones, gzeros functions.

And in order to let those data outside the “for loop” can be also
used in the loop without any memory issue. We use Jacket’s

“local” function to provide each kernel a copy of such data so
that no CPU Subscripted data error will occur.

After all those done, we cast default for loop as Jacket’s gfor loop
to see whether the result can be improved significantly.

5. Result

The parfor used on CPU significantly improved the performance
of the original code. Details are showed in the figure 2.

By dividing the tasks into multiple CPU cores, the performance
doubled.

After we successfully made performance improvement by using
parfor function, we moved on to the GPU side. However, the
GPU side’s result is extremely slower than default in every single
step. In order to find out why GPUarray actually made the
performance decrease so much, we timing the by every single
function. The result is showed in figure 3.

In all those functions, GPUarray failed to win performance with
default CPU code. But, all those functions need to be used a lot in
original code. As a result, we failed to use GPUarray to improve
the performance of the original code.

And then we move on to try Jacket. Which claims itself faster
than GPUarray. However, the result we got in our project is also
very slow.

The detailed timing comparisons of 2 big loops between base and
Jacket are showed in Figure 4.

Figure 2 Performance comparisons between

default and parfor version

Figure 3 Performance comparisons between base

and GPUarray in all basic functions.

6. Further Analysis

In order to find out much more details why our GPU experiments
don’t give us the results we want, we made some further testing
on more functions and make comparisons with CPU, GPUarray,
Jacket.

In all tests, the GPUarray is always the slowest except doing mod
calculation. More details are showed in Figure 5.

To Jacket, our tests shows it is good at handling math calculations
with large numbers of data. However, in our project, a song rarely
has that large number of data.

We also found Jacket is better in sorting, initialization data on
GPU. However, Jacket is bad in data accessing. As a result, its
advantage is balanced by its drawback in our project so that we
didn’t get a good result.

7. Conclusion

In this project, GPU acceleration proved to be infeasible
due to 1) the small size of the data being operated on, and
2) the algorithm’s frequent usage of data access, which
outweighed any speed improvements in other areas.

One option we explored later was tweaking/optimizing the
original code itself. This lead to drastic speed performance
unrelated to parallelization, as shown in Figure 7. It is
interesting to note that upon applying gfor to the tweaked
code, the final times were still slower. Any further
optimization would require rewriting the program in a
different language (e.g. direct C code with CUDA) to avoid
the MATLAB overhead from data access.

Figure 4 Performance comparisons of 2 big loops

between base and Jacket in a song with about 1.6

thousand loops

Figure 5 In almost all tests, GPUarray (the green one)
takes more time than default CPU code and Jacket.

Figure 6 Math Calculation performance comparisons of Jacket

and CPU. Notice that, Jacket can gain better performance only

when the data set is large enough.

8. Bibliography

Karl O’Keeffe, “Dancing Monkeys”, MEng Individual Project
Report 18th June 2003

Will Archer Arentz, “BEAT EXTRACTION FROM DIGITAL
MUSIC”

Figure 7 Final results with tweaked code

