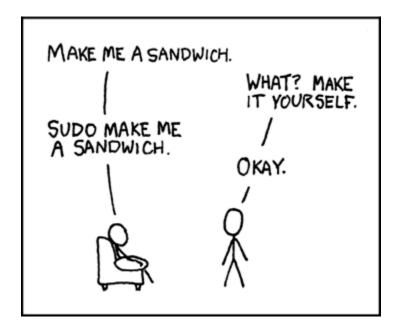


Linux Everywhere

A look at Linux outside the world of desktops

CIS 191 Spring 2012 – Guest Lecture by Philip Peng



Lecture Outline

- 1. Introduction
- 2. Different Platforms
- 3. Reasons for Linux
- 4. Cross-compiling
- 5. Case Study: iPodLinux
- 6. Questions

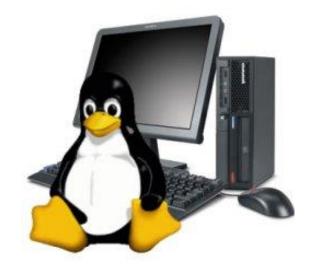
What's in common?


All your hardware are belong to us

- Linux is everywhere
 - If its programmable, you can put Linux on it!
 - Yes, even a microwave

Servers

- What servers use
 - Stability, security, free
 - Examples:
 - CentOS
 - Debian
 - Red Hat



Desktop

- What you use
 - Free Windows/Mac alternative
 - Examples:
 - Ubuntu
 - Fedora
 - PCLinuxOS

Gaming Devices

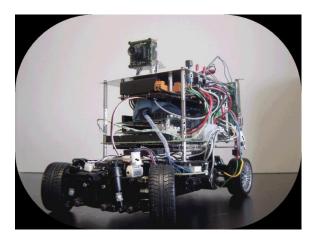
What (white-hat) hackers do

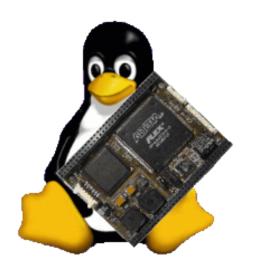
To run "homebrew" software

- Examples:
 - ∘ PS3, Wii, XBOX
 - PS2, GameCube
 - Dreamcast
 - PSP, DS
 - Open Pandora, GP2X

Mobile Devices

- What distributors are developing
 - Community contribution
 - Examples
 - Android
 - Maemo/MeeGo/Tizen
 - Openmoko




Embedded Devices

- What embedded hardware run
 - Small footprint, dev tools
 - Examples
 - RTLinux (real-time)
 - μClinux (no MMU)
 - Ångström (everything)

Why?

Free!

- Free!
 - As in freedom, i.e. open source
 - As in beer, i.e. vs paid upgrades

Homebrew!

- Run own software
 - Your hardware → your software?

Support!

- Community contribution
 - "For the greater good" (i.e. users)
 - Everyone contributes
 - Specialists from all over the world
 - Existing hardware support
 - Many already supported computer architecture
 - Modify existing drivers

Lots of support!

List of Linux supported architectures

From Wikipedia, the free encyclopedia

The Linux kernel is portable and supports the following computer architectu-

- · Alpha architecture:
 - DEC Alpha
 - Samsung Alpha CPU
- · Analog Devices
- · ARM architecture:
 - Acorn Archimedes and Risc PC series
 - DEC StrongARM
 - · Marvell (formerly Intel) XScale
 - Sharp Zaurus
 - iPAQ
 - Palm, Inc.'s Tungsten Handheld^[1]
 - · Gamepark Holdings' GP2X
 - Open Pandora
 - Nokia 770 Internet Tablet
 - Nokia N800
 - Nokia N810
 - Nokia N900
 - gumstix
 - Nintendo DS via DSlinux
 - Sony Mylo
 - · Psion 5, 5MX, Series 7, netBook
 - Some Models of Apple iPods (see iPodLinux)
 - OpenMoko Neo 1973
 - Freescale's (formerly Motorola's) i.MX multimedia processors
- Atmel AVR32
- · Axis Communications' ETRAX CRIS
- · C6X from Texas Instruments
- Freescale's (formerly Motorola's) 68k architecture (68020, 68030, 68040,
 - Some Amigas: A1200, A2500, A3000, A4000
 - · Apple Macintosh II, LC, Quadra, Centris and early Performa series
- Fujitsu FR-V
- Hexagon from Qualcomm

- · Hewlett-Packard's PA-RISC family
- . H8 architecture from Renesas Technology, formerly Hitachi.
 - H8/300
 - H8/500
- IBN
 - System/390 (31-bit)
 - Z/Architecture (Z mainframes) (64-bit)
- Intel IA-64 Itanium, Itanium II
- x86 architecture:
 - IBM PC compatibles using IA-32 and x86-64 processors:
 - . Intel 80386, 80486, and their AMD, Cyrix, Texas Instruments and IBM varia
 - . The entire Pentium series and its Celeron and Xeon variants
 - . The Intel Core processors
 - AMD 5x86, K5, K6, Athlon (all 32-bit versions), Duron, Sempron
 - x86-64: 64-bit processor architecture, now officially known as AMD64 (A
 - Cyrix 5x86, 6x86 (M1), 6x86MX and MediaGX (National/AMD Geode) serie
 - VIA Technologies Eden (Samuel II), VIA C3, and VIA C7 processors
 - Microsoft's Xbox (Pentium III processor), through the Xbox Linux project
 - . SGI Visual Workstation (Pentium II/III processor(s) with SGI chipset)
 - Sun Microsystems Sun386i workstation (80386 and 80486)
 - Support for 8086, 8088, 80186, 80188 and 80286 CPUs is under development
- M32R from Mitsubishi
- Microblaze from Xilinx
- MIPS architecture:
 - Dingo:
 - Infineon's Amazon & Danube Network Processors
 - Ingenic Jz4740
 - Jazz
 - . Cobalt Qube, Cobalt RaQ
 - DECstation
 - . Loongson (MIPS-compatible), Loongson 2, and Loongson 2E from BLX IC Desi
 - . Some PlayStation 2 models, through the PS2 Linux project
 - PlayStation Portable uClinux 2.4.19 port [1]
 □
 - · Broadcom wireless chipsets
 - Dreambox (HD models) [3]
 - · Cavium Octeon packet processors
- MN103 from Panasonic Corporation
- ▲ OnenDISC

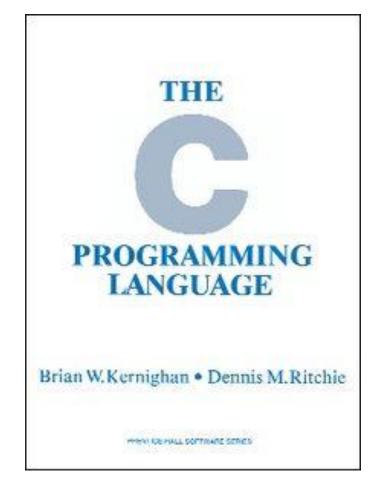
- . OpenRISC 1000 family in the mainline Linux Kernel as of 3.1.
- Beyond Semiconductor OR1200
- Beyond Semiconductor OR1210
- Power Architecture:
 - IBM Servers
- PowerPC architecture:
 - IBM's Cell
 - . Most pre-Intel Apple computers (all PCI-based Power Macintoshes, limited s
 - . Clones of the PCI Power Mac marketed by Power Computing, UMAX and Mc
 - · Amigas upgraded with a "Power-UP" card (such as the Blizzard or CyberSi
 - · AmigaOne motherboard from Eyetech Group Ltd (UK)
 - · Samantha from Soft3 (Italy)
 - IBM RS/6000, iSeries and pSeries systems
 - · Pegasos I and II boards from Genesi
 - · Nintendo GameCube and Wii, through Nintendo GameCube Linux
 - Project BlackDog from Realm Systems, Inc.
 - Sonv PlavStation 3
 - · Microsoft's Xbox 360, through the free60 project
 - . V-Dragon CPU from Culturecom.
 - · Virtex II Pro Field Programmable Array (FPGA) from Xilinx with PowerPC co
 - Dreambox (non-HD models) [4]
- SPARC
 - SPARC (32-bit):
 - Sun-4 (to be abandoned in version 2.6.27)
 - SPARCstation/SPARCserver series (sun4c, sun4m, sun4d)
 - LEON
 - UltraSPARC (64-bit):
 - · Sun Ultra series
 - Sun Blade
 - Sun Fire
 - · SPARC Enterprise systems, also the based on the UltraSPARC T1, Ultra
- SuperH
 - Sega Dreamcast (SuperH SH4)
 - . HP Jornada 680 through Jlime distribution (SuperH SH3)
- S+core
- Tilera
- Xtensa from Tensilica

Why not?

- Because we can
 - If its hackable, it can run Linux

How?

- How do we get Linux running on XXX?
- Port: A version of software modified to run on a different target platform
 - The PS3 port of Fedora is a modified build of Fedora compiled to run on the PS3 architecture
 - e.g. "I ported the Linux kernel to my iPod"



Cross-compiling!

- Supported hardware? Easy! Cross-compile!
- Compiler: A program that converts code to an executable program for your computer
- Cross-compiler: A program that converts code to an executable program for another platform

Cross-compiling!

- What makes this possible?
 C and gcc
 - C programming language is made to be easily portable to different architectures
 - The Linux kernel and all basic tools are written in C
 - Same source code runs of all sorts of platforms

Multiple Compilers

Shell - Konsole

```
root@slax:/# gcc
gcc: no input files
root@slax:/# arm-elf-gcc
arm-elf-gcc: no input files
root@slax:/# arm-uclinux-elf-gcc
arm-uclinux-elf-gcc: no input files
root@slax:/# which gcc
/usr/bin/gcc
root@slax:/# which arm-elf-gcc
/usr/local/arm-uclinux-tools2/bin/arm-elf-gcc
root@slax:/# which arm-uclinux-elf-gcc
/usr/local/arm-uclinux-tools2/bin/arm-uclinux-elf-gcc
root@slax:/#
```

- "arm-elf" is the architecture that runs ELF executables (default format for Linux) on an ARM processor
- μClinux is a Linux kernel fork for microcontrollers without a MMU (memory management unit)

Compiling for LFS (i368 Linux)

Compiling tar for LFS (you did this for HW!)

```
# wget
http://ftp.gnu.org/gnu/tar/tar-
1.26.tar.bz2
# tar -xf tar-1.26.tar.bz2
# cd tar-1.26
# ./configure
# make
```

Compiling for arm-elf

Compiling tar for arm-elf architecture

```
# wget
http://ftp.gnu.org/gnu/tar/tar-
1.26.tar.bz2
# tar -xf tar-1.26.tar.bz2
# cd tar-1.26
# ./configure CC=arm-elf-gcc
LDFLAGS=-elf2flt --host=arm-elf
# make
```

Compiling for arm-elf

- # ./configure CC=arm-elf-gcc LDFLAGS=elf2flt --host=arm-elf
- CC=arm-elf-gcc
 - Specify the "cross-compiler" to be used
- LDFLAGS=-elf2flt
 - Set any special linking flags (e.g. target specific)
 - In this case, convert ELF to bFLT format
- --host=arm-elf
 - Specify the host machine that you are building for

Compiling for arm-elf

```
root@slax:~/cis191# head -c 4 /usr/bin/tar && echo
ELF
root@slax:~/cis191# /usr/bin/tar
/usr/bin/tar: You must specify one of the `-Acdtrux' options
Try `/usr/bin/tar --help' or `/usr/bin/tar --usage' for more information.
root@slax:~/cis191# head -c 4 ./tar-1.26/src/tar && echo
bFLT
root@slax:~/cis191# ./tar-1.26/src/tar
-bash: ./tar-1.26/src/tar: cannot execute binary file
root@slax:~/cis191#
```

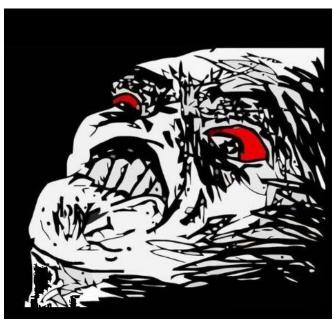
Result:

- Native tar is in ELF format, cross-compiled is bFLT format
- Native tar can execute, cross-compiled tar can't (not on the build computer at least)

Cross-compiling Terminology

- Note on compiling terms: build, host, target
- Build: <u>platform</u> that you are building <u>on</u>
 - Usually unspecified (since almost always Linux)
- Host: <u>platform</u> that you are building <u>for</u>
 - For cross-compiling, e.g. arm-elf architecture
- Target: <u>machine</u> that you are building <u>for</u>
 - For cross-compiling, only specified for special cases with different output formats

That was easy!


- Review: To cross-compile Linux for a <u>supported</u> platform, just add a few config flags, and run make!
- That was easy!

But wait, there's more!

- But what happens if you want to run Linux on an <u>unsupported</u> platform?
- Too bad, you'll have to port it yourself!


Porting Linux = Hard

- Porting Linux in a nutshell:
 - 1. Gather as much information about the hardware
 - 2. Reverse-engineer any currently existing software
 - 3. Modify the cross-compiling tools to generate binaries compatible with the new architecture
 - 4. Modify the kernel source code to support communicating with the various hardware components
 - LFS all-over-again! (Except it probably won't work the first time, or even the second)

Porting Linux = Hard

- Porting Linux <u>minimum</u> requirements:
 - C programming
 - Linux (CIS 191)
 - Compilers (CIS 341)
 - OS concepts (CIS 380)
 - Computer architecture (CIS 501)
 - Experience with hardware debugging (e.g. JTAG)
 - In-depth knowledge of the assembly language of the target architecture (e.g. x86, ARM, MIPS, etc.)

Why bother?

So you can do this

Case Study: iPodLinux

What is iPodLinux

- iPodLinux = iPod + Linux
 - Custom port of μClinux to the old iPod hardware
 - Goal to turn your iPod into more than just an MP3 player
 - Real reason: Because we can!
 - Wiki: http://ipl.derpapst.eu

IRC: <u>#ipodlinux@irc.freenode.net</u>

Code: http://sourceforge.net/projects/ipodlinux/

The Features - Software

- Customizable user interface
- File-browser and plugin support
- Music player w/ OGG & FLAC support
- Video playback with sound
- Many user-ported Linux applications and emulators

The Features - Hardware

- Custom graphical bootloader
- Playback of audio with piezo (scroll "clicker")
- Audio-recording via headphone jack
- Backlight brightness control
- Overclocking CPU to 80MHz (vs Apple's 66MHz)

My contribution

- Joined official dev team in 2008
 - Free iPod gift? Lets hack it!
 - Sansa e200 kernel patches
 - podzilla2 features + bug fixes
 - Experimental kernel builds
 - Compiling tutorials + tools
 - Wiki and forum maintenance

User:Keripo

Contents [hide]

- 1 Information
- 2 Current Work
- 3 Previous Work/Links
- 4 Tools
- 5 Contact Info

Information

Note: Due to the introduction of new to other projects. If you ever need to

- Name: Philip Peng
- Handle: Keripo, Keripo Test
- Location: University of Penr
- Distros: Windows Vista Ultir
- Players: iPod video 5.5G (B)
- Positions: Student, ZeroSlad
- Note: My name is pronounce

Current Work

• See http://ipl.derpapst.eu/wiki/User:Keripo

My contribution

- Project ZeroSlackr
 - Custom, non-destructive iPL installation system
 - Ported numerous third part applications:
 - igpSP Gameboy Advanced emulator
 - hDoom original Doom video game
 - hWolf3D original Wolfenstein3D
 - ... and much more
 - See http://sourceforge.net/projects/zeroslackr/

Compiling iPodLinux

- I wrote a iPodLinux-from-Scratch tutorial!
 - Pre-built dev environment (2.95.3 & 3.4.3 toolchains)
 - Compile podzilla2 GUI + libraries (TTK, hotdog, zlib)
 - Compile ipodloader2 bootloader
 - Patch and compile 2.4.32 uClinux kernel
- Alternative: use ZeroSlackr
 - Entire build script system set up
 - Just run "build-all.sh" and wait ~3hrs
- See http://ipl.derpapst.eu/wiki/Introduction to Compiling for iPodLinux

History Bit: Reverse Engineering

Problem:

No source code/documentation

• Solution:

Reverse engineer it!

- Software not encrypted, can be dumped through hardware means
- Apple left in a Diagnostic Mode
- iPodLinux project goes live in 2003

History Bit: Piezo Hack

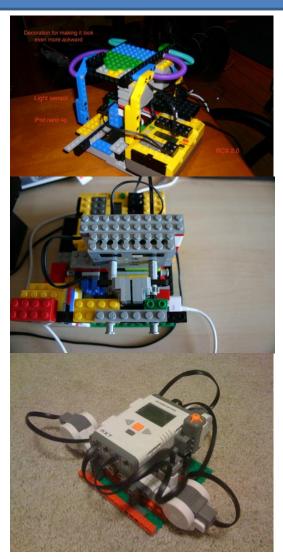
- Problem:
 Can't dump iPod 4G bootloader
- Solution: Record it bit-by-bit!
 - Use the piezo ("clicker") to read the bootloader code as sound
 - Put iPod in sound-proof chamber
 - Leave iPod on overnight, decode the audio recording the next day

History Bit: We had video first!

• Problem:

Still pictures on Apple's new iPod Photo is boring, 2005

• Solution:

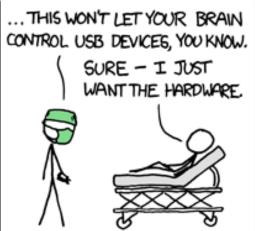

Lets add video support!

- Uncompressed, 15fps, A/V issues
- Apple responds a year later with the iPod 5G, the "iPod video"; (
- We did it first! Still counts!

History Bit: Nanotron 3000

- Problem: iPod nano 2G encrypted, 2006
- Solution: Find an exploit!
 - Buffer overflow in Notes
 functionality (no bound check
 beyond 268 chars in <a href> links)
 - Use LEGO Mindstorm to bruteforce the jump address location

History Bit: iPhone


- Problem:
 Apple releases iPhone
 and iPod Touch in 2007
- Solution: None, it was a good run; (
 - Go work on other cool projects!
 - davidc (David Carne) worked on jailbreakme.com
 - AriX (Ari Weinstein) worked on iJailbreak
 - I work on Android and TA this course (Linux!)



Questions?

