
CIS400/401 Progress Report - Designing Rhythm Game
Interfaces for Touchscreen Devices

Dept. of CIS - Senior Design 2011-2012

Philip H. Peng
pengp@stwing.upenn.edu

Univ. of Pennsylvania
Philadelphia, PA

Stephen H. Lane
shlane@cis.upenn.edu
Univ. of Pennsylvania

Philadelphia, PA

ABSTRACT
As touchscreen devices become increasingly popular, new soft-
ware applications are expected to support touch-focused in-
terfaces for user interaction. This study focuses on the eval-
uation of the effectiveness of various rhythm game interface
designs on touchscreen devices. This will be accomplished
through the development of a rhythm game prototype for An-
droid tablets. The prototype app will demo various game in-
terfaces and collect usage data that will be studied later to
evaluate their effectiveness.

1. INTRODUCTION
Over the past few years, touchscreen devices have become

increasingly common in the consumer market. According to
a report in the March 2010 publication of Information Dis-
play, consumer-device manufacturers are rapidly adopting
touch, with revenues increasing 10x and unit production 3x
faster than the display industry [8]. With the adoption of
this new input technology comes the natural expectation of
increased software support for new touch-focused interfaces,
allowing for more natural, intuitive, and powerful human-
device interactions [4].

One area that touchscreen support can be leveraged is in
the design of rhythm games. A touchscreen is a special-
ized display that receives user input through physical con-
tact from a finger or stylus. Rhythm games are a genre of
music-based games in which the player performs specific ac-
tions in response to audio and visual cues. Rhythm games
often focus the the player’s beat recognition abilities and
consequently their timing accuracy, aided through visual
patterns that match the rhythm of the song. These visual
patterns consist of a series of note objects that appear or
move across the screen in a manner referred to in this study
as the gameplay mode. Interaction with these notes would
typically involve hand actions occuring in the hitbox area, a
pre-defined area for interaction. In non-touchscreen rhythm
games, such actions may be the pressing of a button; in a
touchscreen scenario, such actions would be either soft but-
ton touches, defined as virtual buttons interacted by through
tap, or touch-input gestures, defined as touch events with
predefined timing and path properties.

Poorly placed user interface elements can lead to degraded
performance and lowered response times, especially under
environments with secondary physical tasks or factors that

demand high attention [1]. In rhythm games, lowering the
attention load required for executing the associated note ac-
tion can result in increased performance in rhythm correct-
ness and timing accuracy. A well designed user interface that
yields high gameplay performance is considered efficient in
its task, the presentation of notes data to the player. In this
study, various simplified game interfaces are designed and
comared to find out which game interface is most efficient
for rhythm games on touchscreen devices.

2. RELATED WORK
Wiimote + Dance Game

In their study, ”Understanding Visual Interfaces for the
Next Generation of Dance-Based Rhythm Video Games,”
Charbonneau et al. presented their experimental study of
comparing game interfaces for RealDance, a dancing game
prototype that uses the Wiimote. Three interfaces were
compared: ”Timeline”, ”Motion Lines”, and ”Beat Circles.”
The results of their studies showed that both ”Motion Lines”
and ”Beat Circles” were significantly more efficient than the
traditional ”Timeline” interface in dance games [2].

External Multi-Touch Panel + Turn-based Strategy
Game

In their study, ”A Study on Multi-Touch Interaction for
Game,” Yong-Chul Kwon and Won-Hyung Lee created a
multi-touch panel using FTIR technology and tested ot with
a turn-based strategy game. In doing so, they created guide-
lines for multi-touch user interface designs and also argues
that touch interfaces can be more comfortable and sensitive
than traditional mouse and keyboard input given that the
game interface is designed for multi-touch technology [6].

iPad + Real-Time Strategy Game
In their study, ”One-handed interface for multitouch-enabled

real-time strategy games,” Crenshaw et al. designed a new
touch-based interface for single-handed usage of large-sized
touch devices. They first designed a real-time strategy game
with a touch-based interface and surveyed participants with
it. Their study showed that porting traditional desktop
games to iOS require the development of a user interface
specifically aimed at touchscreen interfaces.They argue that
well designed multi-touch user interfaces can lead to faster
and more accurate response times due to the larger area and
less targetting precision required of gestures over traditional
buttons [3].



3. STUDY OVERVIEW
This study will evaluate rhythm game interfaces through

the following three stages:

1. Design various simplified rhythm game interfaces with
categorized properties

2. Prototype app development of a rhythm game that de-
mos the various interfaces

3. Evaluation of the interfaces through collecting user
data and feedback

These three stages will lead to better understanding of the
how the compared game interface properties affect gameplay
effectiveness in rhythm games. The results of this study can
be used in designing user interfaces for rhythm games as well
as other time-critical applications.

3.1 Design
In the Design stage of the study, a basic rhythm game pro-

totype was designed to contain demos implementing each
target interface under study. These demos will also only
recognize the simple, singular ”tap” gesture to eliminate the
variable of delay from performing complex touch gestures.
Just like in most rhythm games, if a hitbox is tapped when
a note is overlapping it, the game will register the note as
”hit”; if a note passes its destination hitbox, the game will
register the note as a ”miss”. To determine what types of
interfaces to design and study, various commercial rhythm
games were inspected for common game interface properties.
These properties were then used to create simplified rhythm
game interfaces.

Designs
The results of the analysis of the commercial rhythm games

are shown in Figure 3 in the Appendix. Based on the gener-
alized styles extracted from the analysis, simplified interface
designs were drafted and categorized as shown in Figure 4
in the Appendix. Overall, eight designs were created based
off object layout and object movement. For layout, the four
categories were ”column”, ”corners”, ”centre”, and ”grid”. For
movement, either the multiple notes move toward station-
ary hitboxes or hitboxes move toward multiple stationary
notes. In these categorizations, the larger object is classi-
fied as the hitbox while the smaller object is classified as
the notes. This clarification is needed due to the indepen-
dence of movements when outside the column scrolling style.

Simplification
To simplify the interface design, there is only a maximum

of four hitboxes for interface demos #1, #3 and #5. For
#2 and #4, only one hitbox object is used; once the hitbox
reaches the edge, it restarts. These two simplifications are
done to reduce the degrading effect of gameplay complex-
ity and interface clutter on player performance. Depending
on complexity experienced during testing in the Prototype
stage, the grids in #7 and #8 may be reduced from to 4x4
to 2x2 or be added as two more demos.

Comparisons
These eight interface designs encompass the majority of

interface designs used by the rhythm games analysied in
Figure 3. Demo #1 closely matches all the rhythm games
under the ”Falling Notes” style, particularly Dance Dance

Revolution. Demo #2 matches DJMax Technika’s ”Sliding
Hitbox” style. Demo #3 is similar to the games under the
Spreading Notes style but more emphasized in the spread-
ing aspect. In those games, objects approach from a central
area in the horizon up top to a row near the bottom; in
demo #3, the objects approach from the horizon in the cen-
tre of the screen to the four corners. Demo #5 is similar to
Gitaroo Man Lives! ’s ”Focusing Notes” style but with four
focus points instead of one. There is currently no rhythm
game with an interface similar to demo #4 nor #6; however,
the two styles should be studied as the reverses of #3 and
#5 respectively. Demo #7 closely matches jubeat ’s ”Filling
Notes” style. Demo #8 is similar to Osu! Tatakae! Ouen-
dan! ’s ”Shrinking Hitbox” style but restricts objects into a
grid instead of allowing any location. This is done to reduce
the complexity of the game and the player’s possible reaction
delay from an object appearing in an unexpected location.
The ”Streaming Notes” and ”Sliding Cursor” styles are not
covered in this study as they only operate on one row; the
complexity of their gameplay comes from visual recognition
of the object subtypes, a factor that is eliminated from this
study through only using a single graphic for all notes ob-
jects and a single graphic for all hitbox objects.

Added Buttons
In order to test the attention requirement of each inter-

face, a secondary, lower priority task with an maximal po-
tential attention load needed to be added. This was done
by adding two red buttons to the side of the screen (since
the screen will be kept landscape in these demos) as shown
in Figure 1. These buttons will not affect the main task
(tapping the tapboxes with the correct timing) but provides
a secondary, recordable task with no minimal attention re-
quirement.

Figure 1: Example interface with side buttons.

3.2 Prototype
In the Prototyping stage of the study, the designed rhythm

game prototype will be created based on the designs drafted
in the previous Design stage.

Figure 2 shows the components structure of prototype app
and how each component will interact with each other. The
player will then go through the following stages of app usage:

App Startup
The Android app starts off with the ”Main Menu” Activ-

ity, from which the player can choose which demo they want



Figure 2: App components interaction diagram.

to test (only one demo is shown in the figure as an example)
from a list. Once selected, the demo Activity will launch.

Demo Startup
Upon the start of the demo Activity, the touch handler,

notes list, hitbox list, buttons list, and other objects will
be initialized. The touch handlers will generally all be the
same, but may be tailored to the specific demo. In a normal
rhythm game, the notes list would normally be generated
from or loaded based on the song that was selected. In this
prototype, a hardcoded song’s notes data will be loaded in-
stead. The hitbox list would depend on the demo being
tested. Because all the interfaces are designed as squares
and the tablet’s screen is wider than tall, two buttons will
always be loaded, set to each side of the main interface
box. By placing them on either side, they will not inter-
fere with the main interface but is also easily accessible and
always present. Ofter object initialization, the visible inter-
face will start updating with the drawable objects and the
music player will start.

Demo Notes Update
The music player will be synchronized with the timer,

which holds the central ”current time” of the game for the
rest of the game to reference. On every update cycle, the
timer will be resynced and all notes objects will synchronize
with that timer. Based on the time difference between the
current game time and the note’s expected end time, the
note object will calculate its difference from its target hit-
box and tell the main interface’s View to draw the note’s
graphics at the corresponding distance from the hitbox (if
it is within the drawable area). For the demos with moving

hitboxes, the notes will independently update its variables,
but it will not move.

Demo Button Tap
Upon a touch event, the touch handler will check if a hit-

box was tapped. If no hitbox was tapped, it will check if a
button was tapped. If a button is tapped, the button will
tell the data tracker that it was tapped. The data tracker
will increment the visual counter of taps as well as record
the time before the last tap occured.

Demo Hitbox Tap
Upon a touch event, the touch handler will check if a hit-

box was tapped. If one is, that hitbox will then cycle through
the list of notes objects to see if any were in range of itself.
If none were, nothing happens and the game continues. If
a note was within the hitbox’s range, that note’s hit sta-
tus will be updated and the time difference will be recorded
by the score tracker. The score tracker will increment the
notes success count as well as the accuracy rating based on
the time difference.

Demo Finished
After all the notes are done, some statistical data will be

calculated based on the note hits during the game, such as
the average accuracy and hit percentage. These numbers
will be sent to the data tracker, which will then all be sent
to an external database for analysis in the Evaluate stage
of this study. At this step, the player will also be presented
with a survey to fill out to give qualitative feedback on the
demo.

3.3 Evaluation
In the Evaluation stage of the study, the rhythm game

demos will be packaged together as a testable prototype
with an added data gathering system. This playable pro-
totype will be built for the Android 3.0 OS due to the facts
that 1) Android 3.0 targets tablets, which usually feature
large multi-touch displays [5], 2) Android tablet use is on
the rise [9], and 3) I own an Android Tablet. This playable
prototype will be tested by random samples of UPenn stu-
dents as well as published online through the Android Mar-
ket. The prototype’s data gathering system will consist of
two parts: 1) a data tracker that will provide quantitative
values, and 2) a user survey and feedback system for quali-
tative but relative information.

Quantitative Measurements
There will be four raw data values that will be measured

quantitatively:
• Notes hit count
• Notes hit average score
• Button press count
• Button press average frequency

The data values collected on note hits can be used to di-
rectly compare the player’s performance between different
game interfaces. Ideally the higher the hit count and the
higher the average score, the more efficient the user interface
was in keeping the player on rhythm (relative to the other
demoed interfaces). The data collected on button presses
can be used to directly compare the attention load experi-
enced by the player between different game interfaces. If an
interface requires a lot of attention, the player will press the



buttons fewer times or do so at a slower rate. As a baseline,
demo #1 will be used for comparison purposes as ”Falling
notes” style rhythm games are the most familiar for most
players.

Qualitative Surveys
There will be five qualitative aspects of the demo that will

be rated in the surveys:

• Challenge (Easy –> Hard)
• Concentration (Low –> High)
• Fun (Boring –> Fun)
• Mastery (Easy –> Hard)
• Uniqueness (Old –> New)

”Challenge” will ask the question of, ”Did the demo re-
quire a lot of skill (e.g. timing with hand-eye coordina-
tion)?”. This result will be compared to the quantitative
notes hit data to see if there are differences between per-
ceived and actual results. ”Concentration” will ask the ques-
tion of, ”Did the demo require a high amount of attention
(e.g. less focus on hitting the button)?”. This result will be
compared to the quantitative button press data in the same
way. ”Fun” will ask the question of ”Did you enjoy play-
ing the demo (relative to the other demos)?”, ”Mastery” will
ask the question, ”Did you find the demo’s interface intu-
itive and easy to learn/use?”, and ”Uniqueness” will ask the
question, ”Did you find the demo’s interface and gameplay
new and unique?”. Finally, an extra field will be added for
additional comments.

While the last three qualitative aspects listed above are
unrelated to the efficiency of the rhythm game interface,
they have merit in deciding the feasibility of using such an
interface in an actual rhythm game. Swetser and Wyeth ar-
gues that enjoyment of games does not only depend on the
final outcome (notes hitting performance in this case) but
also factors such as concentration, mastery, and fun [7]. An
interface that achieves high efficiency but is not perceived as
unique (such as ”Falling Notes”) may not be a good choice if
the goal is creating a new, innovative rhythm game. Alter-
natively, an interface with low efficiency but high fun factor
may be worth investigating into further and refining.

The methods and statistical analysis approaches of analysing
the collected data has not yet been planned out yet. They
will most likely be decided upon after seeing the results of
the initial sample survey.

4. TECHNICAL RESOURCES
Note: As of the current moment, the prototype is being
written in pure Android Java code. After completion of the
project, the prototype will be ported over to the Unity 3
game engine.

Test Device
The target touchscreen device for testing in this project will
be the Samsung Galaxy Tab 10.1. The Galaxy Tab is an
Android 3.0 tablet running on a 1GHz dual-core processor
and has a 10.1-inch capacitive touchscreen supporting up to
10 multi-touch points. It also has a built-in vibrating motor,
allowing for additional haptic-feedback support.

Android SDK
http://developer.android.com/sdk/

The Android SDK is the set of development tools and core
libraries required for developing Android applications.

Eclipse
http://www.eclipse.org/

Eclipse is the standard IDE (Integrated Development Envi-
ronment) for developing Android apps. The Android SDK
is designed to integrate with Eclipse.

Google Code
http://code.google.com/p/beats2/

Google Code is a group of online resources, tools, and host-
ing for project development. In this project, Google Code
will be used for hosting the SVN source code, as well as bug
tracking and wiki hosting.

Google Analytics
http://www.google.com/analytics/

Google Analytics is a free online service for tracking usage
of features in applications. It will probably be used in this
project to track the user feedback during the Evaluation
stage.

Unity 3
http://unity3d.com/unity/publishing/android.html

The Unity 3 development tools consists of the editor, the
series of tools for developing games, and the game engine,
the software backend that allows the developed games to run
on target platforms. Unity 3 was chosen due to its cross-
platform support of other touchscreen-supporting platforms
and large community and professional support base. In this
project, the toolkit will be developed as script extentions for
the editor, while the prototypes will be run using the game
engine. The Unity 3 license required for this project will
be the regular Unity 3 package with the additional Android
add-on to allow for development of Android apps.

Orthello2D
http://www.wyrmtale.com/products/unity3d-components/

orthello

Orthello2D is a free 2D framework for Unity 3 game develop-
ment. Since the demos being built for this study are meant
to be simple and 2D, this framework will very likely be used.

FingerGestures
http://www.fatalfrog.com/?page_id=140

FingerGestures is a series of scripts for Unity 3 that adds
support for advanced single and multi-finger gestures. The
prototype in this study only requires tap actions, but more
touch gestures will be needed if it were to develop beyond
the prototype stage. The efficiency of different finger ges-
tures with different rhythm game interfaces is also another
interesting area to be studied.

KinectWrapper
http://wiki.etc.cmu.edu/unity3d/index.php/Microsoft_

Kinect_-_Open_NI

KinectWrapper is a series of scripts for Unity 3 that adds
support for the XBOX Kinect via wrapping Open NI drivers.
With the Kinect, a virtual touch grid can be implemented
and supported as the input channel instead of a touchscreen.

http://developer.android.com/sdk/
http://www.eclipse.org/
http://code.google.com/p/beats2/
http://www.google.com/analytics/
http://unity3d.com/unity/publishing/android.html
http://www.wyrmtale.com/products/unity3d-components/orthello
http://www.wyrmtale.com/products/unity3d-components/orthello
http://www.fatalfrog.com/?page_id=140
http://wiki.etc.cmu.edu/unity3d/index.php/Microsoft_Kinect_-_Open_NI
http://wiki.etc.cmu.edu/unity3d/index.php/Microsoft_Kinect_-_Open_NI


Whether or not the same efficiency of the rhythm game in-
terfaces studied here stays the same when switching from a
physical touchscreen to a virtual one is also further topic to
study.

5. WORK PLAN

5.1 Work Completed
As of the moment, the Design stage is complete and the

Prototype stage has started. The work-in-progress prototype
currently has a working menu and demos #1, #3, and #5
are implemented but not fully functional as demos. More
specifically, the interface and touch handler portions are
done, but none of the common components are complete,
nor is the external database ready.

Learning how to use the Unity 3 engine proved more diffi-
cult than originally though, mostly due to the fact that the
engine was meant for designing large, complex 3D games in-
stead of simple 2D games such as the demos used for this
study. As a result, the prototype will continue being built
with standard Android Java libraries, then later ported over
to Unity 3. The following are completed work items based
on the original plan:

1) Setup - Completed
• Obtained Unity 3 license with Android add-on
• Set up Google Code project
• Set up Eclipse with Android SDK
• Create a ”Hello World” Android app through Unity 3

2) Investigation - Completed
• Experimented with FingerGesture scripts
• Experimented with Orthello2D framework
• Decided that it would be faster to write the prototype

first with Android Java
3) Drafting - Completed

• Drafted designs for rhythm game interfaces
• Drafted designs for rhythm game engine
• Createed a simple prototype demoing touch input and

drawing
5) Prototyping - In Progress

• Created implentation demos for interfaces #1, #3, and
#5

5.2 Remaining Work
The following are remaining work items for next semester.

5) Prototype - Mar 9th
• Create implentation demos for interfaces #2, #4, #6,

#7 and #8 [3 weeks]
• Complete remaining parts of rhythm game engine [3

weeks]
• Set up Google Analytics for data tracking [2 weeks]
• Create proper graphics and cleanup code [1 week]

6) Evaluation - Apr 6th
• Selectively survey students for prototype feedback and

fixing [0.5 week]
• Randomly survey students [0.5 week]
• Large-scale survey gamers via Market publishing [3

weeks]
• Perform statistical analysis on collected results [on-

going]
7) Report - Apr 20th

• Draw conclusions based on results of feedback analysis
• Write report summarizing findings

6. APPENDIX
See figures on following pages.

7. REFERENCES
[1] Andrew Bragdon, Eugene Nelson, Yang Li, and Ken

Hinckley. Experimental analysis of touch-screen gesture
designs in mobile environments.
http://yangl.org/pdf/gesturestudy-chi2011.pdf.

[2] Emiko Charbonneau, Andrew Miller, Chadwick
Wingrave, and Joseph J. LaViola Jr. Understanding
visual interfaces for the next generation of dance-based
rhythm video games.
http://dl.acm.org/citation.cfm?id=1581092.

[3] Nicole Crenshaw, Alexandra Holloway, Scott Orzech,
and Wai Son Wong. One-handed interface for
multitouch-enabled real-time strategy games.
http://ga.fdg2011.org/papers/2.pdf.

[4] Bradley H. Hayes. Software driven multi-touch input
display as an improved, intuitive, and practical
interaction device.
http://www.bradhayes.info/thesis.pdf.

[5] Google Inc. Android 3.0 platform highlights.
http://developer.android.com/sdk/android-3.0-

highlights.html.

[6] Yong Chul Kwon and Won-Hyung Lee. A study on
multi-touch interface for game. fdff.

[7] Penelope Sweetser and Peta Wyeth. Gameflow: A
model for evaluation player enjoyment in games.
http://dl.acm.org/citation.cfm?id=1077253.

[8] Geoff Walker. The best of times.
http://www.informationdisplay.org/issues/2010/03/art3/art3.pdf,
March 2010.

[9] Jun Yang. Android tablets gained on ipad in third
quarter. http://www.bloomberg.com/news/2011-10-
21/android-tablets-gained-on-ipad-in-third-

quarter-researcher-says.html.



Figure 3: Analysis of the interfaces of various rhythm games.



Figure 4: Interfaces designs to be demoed in the prototype.


	Introduction
	Related Work
	Study Overview
	Design
	Prototype
	Evaluation

	Technical Resources
	Work Plan
	Work Completed
	Remaining Work

	Appendix
	References

